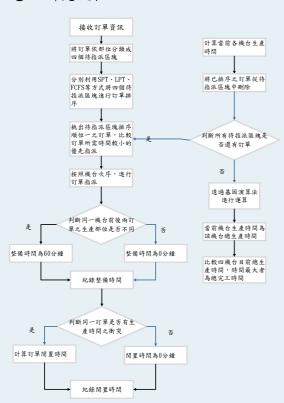


應用基因演算法於開放式排程問題 -以製衣印刷作業為例

指導老師: 蔡啟揚 教授 學生: 謝柏旭 、 胡連晉 、 劉士綱

研究動機


探討開放式排程問題如何運用基因演算法 等排程方法找出最優解 。

研究目的

利用基因演算法來優化的工單排序,透過 C#程式語言,求得近似最優解,以降低總生產時 間,進而提升訂單達交率。

研究方法

● 研究流程

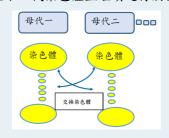
● 參數設定

 $X_{ij} \in 0, 1 \ (i \in 1, 2, 3, 4, j \in 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)$

部位 單	1	2	3	4	5	6	7	8	9	10
前胸	V	V	V	V	V		V	V	V	V
(1)										
後背	V				V	V	V		V	V
(2)										
袖子	V	V	V	V	V	V	V	V	V	
(3)										
肩膀	V									
(4)	l									
需求量	1613	937	3357	4552	1207	2672	405	1325	5500	3158

T; ≡ 生產部位 i 所需之時間

-1	-1 22-12-17-10 -11-1								
		前胸	後背	袖子	肩膀				
		(1)	(2)	(3)	(4)				
每台	郭位\秒	2	3	5	4				


T_s ∈ 0,1 整備時間 次\秒 60

● 基因演算法流程

● 基因演算-交配機制

挑選適應值較高之母代染色體進行交 配,產生下一代染色體並繼續進行演算。

基因演算-突變機制

在交配過程中有機率性進行突變,隨機挑選母 代染色體進行交配,產生下一代染色體並繼續進行

演算。

基因演算法

基因演算法是一種啟發式演算法,最基本的運算元即為基因,藉由複製與交配機制,先求得相對較優解後,再透過突變機制,進行基因變異,以跳脫特定範圍,找尋更好的解。

研究結果(以表格呈現)

測試組別	初始總完 工時間 (秒)	初始最大 閒置時間 (秒)	改善總完 工時間 (秒)	改善最大 閒置時間 (秒)	改善幅度 百分比
1	52223	3640	46658	1372	11%
2	93090	14817	49074	76	47%
3	52223	3640	46393	2831	11%
4	93090	14817	49074	76	47%
5	93090	14817	49074	76	47%
6	52223	3640	48803	5300	7%
7	56063	7395	47924	2351	15%
8	75420	20305	46614	4069	38%
9	52223	3640	45658	0	13%
10	93090	14817	48010	76	48%

本研究將 4 組初始解每組 10 份訂單,經過拆單後總共 24 份工單的資訊代入程式後,得到改善後的最佳解,該步驟重複十次得到十組改善後最佳解亦即十組測試組別,經過改善百分比可以看出,本次測試改動很大,表示本次實驗執行是有效的。

結論

此解根據基因演算法有 一定的準確性,且改善的幅度 明顯,可以有效地縮短工廠生 產的時間成本。

未來方向

- 增加樣本基數
- 增加不同演算法
- 加入分析拆單機制