

應用測試準則提升CCC管制圖偵測能力

Enhancing the Detection Ability of CCC Charts through the Application of Run Rules

施芷盈 林盈孜 何佳蓁 指導老師:陳佩雯 教授 組別/編號: B2-2 學生:

研究背景與動機

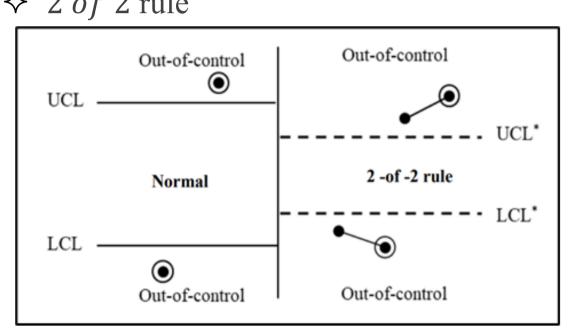
管制圖是一種評估及監測製程狀況的品質管理工具,以確保產品品質穩定並及早發現可能的問題。當今生產技術純熟,高良率製程管制圖之研究對當前的製造業與科技 業來說尤為重要,然而在搜尋相關資料後,我們發現在當前已有的文獻中,對於提升管制圖敏感度這一領域較缺乏著墨,因此我們認為可以在此方向進行更深入的研究。

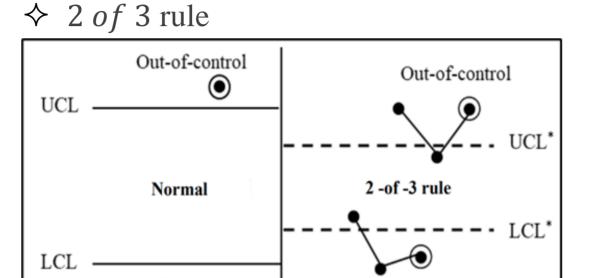
傳統管制圖用於監測高良率製程會出現缺陷,所以本研究使用累積合格品數管制圖 (cumulative counts of conforming chart, CCC管制圖) 並結合兩種類測試準則:一般型 $m \ of \ k$ 連串測試準則與改良型 $I - m \ of \ k$ 連串測試準則,研究結果顯示可以有效提升 CCC 管制圖的偵測能力。

研究方法

→ 一般性 m of k 連串測試準則

 \Rightarrow 2 of 2 rule

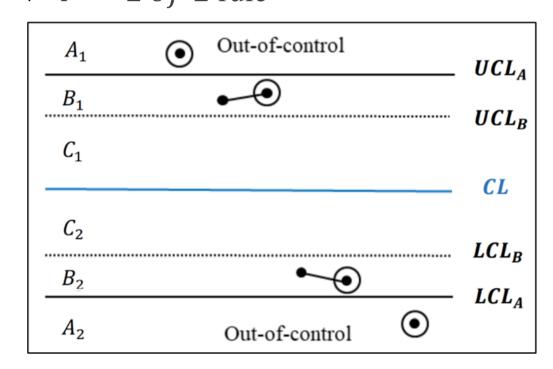




Out-of-control

► I - m of k 連串測試準則

 $\Rightarrow I - 2 \text{ of } 2 \text{ rule}$



Out-of-control



▶狀態

- ♦ 2 of 2 rule 與 I 2 of 2 rule
 - ◎ 狀態 0:所有樣本點皆落在管制界限內之區域;
 - ◎ 狀態 3:吸收狀態 (absorbing state),連續兩組樣本點落於管制界線外,或單點超出一般管制界線外(I-2 of 2)。
- ♦ 2 of 3 rule and I 2 of 3 rule
 - ◎ 狀態 0:所有樣本點皆落在管制界限內之區域;
 - ◎ 狀態 7:吸收狀態 (absorbing state),連續三組樣本點中有兩組落於管制界線外, 或單點超出一般管制界線外(I-2 of 3)。

▶ 轉移矩陣 P

令 p_C 為樣本點在管制界限內之機率值, p_U 為樣本點超出管制上限 UCL^* 之機率值, p_L 為樣本點低於 管制下限 LCL* 之機率值。假設 $p_{ij} = P(X_{t+1} = j \mid X_t = i)$ 表示由狀態 i 至狀態 j 之轉移機率。

$$\mathbf{P} = \begin{bmatrix} p_C & p_U & p_L & 0 \\ p_C & 0 & p_L & p_U \\ p_C & p_U & 0 & p_L \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

◆ 2 o	<i>f</i> 3	rul	e					
1	p_c	p_U 0 0 0 0 p_U 0 0	p_L	0	0	0	0	0]
	0	0	0	p_L	$p_{\mathcal{C}}$	0	0	$\begin{bmatrix} 0 \\ p_U \end{bmatrix}$
	0	0	0	0	0	$p_{\mathcal{C}}$	p_U	p_L
$\mathbf{p} =$	0	0	0	0	0	$p_{\mathcal{C}}$	0	$p_U + p_L$
. –	$p_{\mathcal{C}}$	0	p_L	0	0	0	0	p_U
	$p_{\mathcal{C}}$	p_U	0	0	0	0	0	p_L
	0	0	0	0	$p_{\mathcal{C}}$	0	0	$p_U + p_L$
	L 0	0	0	0	0	0	0	1]

令 p_k 表示樣本點落在區間 $A \cdot B \cdot C$ 之機率值(一側),假設 $p_{ij} = P(X_{t+1} = j \mid X_t = i)$ 表示由狀態 i 至狀態 j 之轉移機率,並假設 $2p_c = 1 - 2p_a - 2p_b$

$$\Rightarrow I - 2 \text{ of } 2 \text{ rule}$$

$$\mathbf{P} = \begin{bmatrix} 1 - 2p_a - 2p_b & p_b & p_b & 2p_a \\ 1 - 2p_a - 2p_b & 0 & p_b & 2p_a + p_b \\ 1 - 2p_a - 2p_b & p_b & 0 & 2p_a + p_b \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} 1 - 2p_a - 2p_b & p_b & p_b & 2p_a \\ 1 - 2p_a - 2p_b & 0 & p_b & 2p_a + p_b \\ 1 - 2p_a - 2p_b & p_b & 0 & 2p_a + p_b \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{P} = \begin{bmatrix} x & p_b & p_b & 0 & 0 & 0 & 2p_a \\ 0 & 0 & 0 & p_b & x & 0 & 0 & y \\ 0 & 0 & 0 & 0 & 0 & x & p_b & y \\ 0 & 0 & 0 & 0 & 0 & 0 & x & p_b & y \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & y \\ x & 0 & p_b & 0 & 0 & 0 & 0 & y \\ x & p_b & 0 & 0 & 0 & 0 & 0 & y \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

▶ 經過時間 M 之聯立方程式

令 M_{ij} 表示由狀態 i 離開,第一次經過狀態 j 之期望時間,依據馬可夫鏈理論及上述機率轉移矩陣 P , M_{ij} 可透過下列聯立方程式求解而得:

$$♦$$
 2 of 2 rule 與 $I - 2$ of 2 rule

$$\begin{cases} M_{03} = 1 + p_C M_{03} + p_U M_{13} + p_L M_{23} \\ M_{13} = 1 + p_C M_{03} + p_L M_{23} \\ M_{23} = 1 + p_C M_{03} + p_U M_{13} \end{cases}$$

$M_{07} = 1 + p_C M_{07} + p_U M_{17} + p_L M_{27}$ $M_{17} = 1 + p_L M_{37} + p_C M_{47}$ $M_{27} = 1 + p_C M_{57} + p_U M_{67}$

$\langle M_{37} = 1 + p_C M_{57} \rangle$ $M_{47} = 1 + p_C M_{07} + p_L M_{27}$ $M_{57} = 1 + p_C M_{07} + p_U M_{17}$

▶ 平均連串長度 ARL

$$\Rightarrow 2 \text{ of 2 rule}$$

$$ARL_0 = M_{03} = \frac{1}{1 - p_C - \frac{p_U}{1 + p_U} - \frac{p_L}{1 + p_L}}$$

$$\Rightarrow$$
 2 of 3 rule
$$ARL_0 = M_{07} = \frac{1+3p+p^2-2p^3}{2p^2[2+p-2p^2]}$$

$$\Rightarrow I - 2 \text{ of 2 rule}$$

$$ARL_b = M_{bb} = \frac{1+p_b}{1+p_b}$$

$$\Rightarrow I - 2 \text{ of } 3 \text{ rule}$$

 $M_{67} = 1 + p_C M_{47}$

$ARL_0 = M_{03} = \frac{1+p_b}{2(p_a+p_ap_b+p_b^2)}$

$$ARL_0 = M_{07} = \frac{-1 + (2p_a - 3)p_b + (2p_a - 1)p_b^2 + 2p_b^3}{2[2p_a^2p_b(1 + p_b) + p_b^2(2p_b^2 - p_b - 2) + p_a(4p_b^3 + p_b^2 - 3p_b - 1)]}$$

\triangleright ARL₁

 $ARL = (I - R)^{-1}1$

其中 R 為單階轉換機率矩陣 P 去掉最後一行與列所形成之部分矩陣; I 為單位矩陣; 1 為所有元素皆為 1 之矩陣。

研究過程

以 CCC 管制圖作為比較基準,並使用 Matlab 建立馬可夫鏈模型進行模擬

制圖優劣的指標,將未應用敏感性準則之管制圖與應用敏感性準則之管制圖做比較。

STEP 1 將ARL0=370代入求解方程式,得 $pa \times pb$

將 pa、pb 代入(I-R)⁻¹1 模型計算ARL STEP 2

研究成果與討論

 \lor CCC管制圖與 $m \ of \ k$ 測試準則 $\lor I - m \ of \ k$ 測試準則 ARL 比較表

$> \alpha = 0.0027$, ARL=370

p	Regular CCC Chart	2 of 2	I-2 of 2	2 of 3	I-2 of 3
0.00001	3.75	5.65	3.73	4.87	3.73
0.00002	13.95	17.50	13.87	14.44	13.87
0.00003	50.54	57.02	50.35	48.27	50.34
0.00004	162.84	174.14	162.54	159.76	162.53
0.00005	370.48	370.09	370.13	370.33	370.15
0.00006	505.35	437.38	504.87	446.96	504.90
0.00007	503.95	374.31	503.35	380.01	503.39
800000	458.01	299.61	457.36	303.42	457.41
0.00009	410.85	241.67	410.19	245.01	410.24
0.00010	370.60	198.82	369.94	202.03	369.99
0.00020	185.67	56.98	185.01	59.29	185.06
0.00030	123.94	28.77	123.29	30.48	123.34
0.00040	93.07	18.25	92.43	19.60	92.48
0.00050	74.56	13.09	73.92	14.20	73.97

$\triangleright \alpha = 0.005$, ARL=200

p	Regular CCC Chart	2 of 2	I-2 of 2	2 of 3	I-2 of 3
0.00001	3.31	5.09	3.31	4.45	3.31
0.00002	10.87	13.97	10.87	11.75	10.87
0.00003	34.53	39.74	34.53	34.20	34.53
0.00004	97.23	105.01	97.23	97.13	97.23
0.00005	200.12	200.09	200.12	200.10	200.12
0.00006	266.68	232.29	266.68	237.56	266.68
0.00007	268.70	202.16	268.70	205.74	268.70
0.00008	246.26	163.86	246.26	166.36	246.25
0.00009	221.69	133.20	221.69	135.40	221.69
0.00010	200.24	110.21	200.24	112.34	200.24
0.00020	100.49	33.04	100.49	34.65	100.49
0.00030	67.16	17.34	67.16	18.55	67.16
0.00040	50.49	11.38	50.49	12.34	50.49
0.00050	40.49	8.42	40.49	9.21	40.49

$> \alpha = 0.001$, ARL=100

p	Regular CCC Chart	2 of 2	I-2 of 2	2 of 3	I-2 of 3
0.00001	2.88	4.53	2.87	4.03	2.88
0.00002	8.19	10.83	8.18	9.33	8.18
0.00003	22.41	26.42	22.39	23.20	22.39
0.00004	54.29	59.25	54.27	55.38	54.27
0.00005	100.12	100.03	100.10	100.07	100.10
0.00006	129.62	113.57	129.58	116.42	129.58
0.00007	131.99	100.89	131.93	103.23	131.93
0.00008	122.30	83.28	122.23	85.04	122.24
0.00009	110.72	68.53	110.65	70.07	110.65
0.00010	100.24	57.22	100.17	58.69	100.17
0.00020	50.50	18.35	50.43	19.44	50.43
0.00030	33.83	10.18	33.76	11.00	33.76
0.00040	25.50	7.01	25.43	7.66	25.43
0.00050	20.50	5.40	20.43	5.94	20.43

➤ 2 of 2 與 I - 2 of 2

當 p < 0.00005 時, $ARL_{I-2 \text{ of } 2} < ARL_{2 \text{ of } 2}$,I-2 of 2 在管制外的表現較佳; 當 p > 0.00005 時, $ARL_{I-2 of 2} > ARL_{2 of 2}$,則 2 of 2在管制外的表現較佳,且兩 者間的差距明顯。綜觀來看,當p些許改善時,使用I-2 of 2 可以更快的偵測 製程的微量偏移;而當 p 發生惡化時,使用 2 of 2 可具有較快的偵測能力。

▶ 2 of 3 與 I - 2 of 3

當 p < 0.00002時, $ARL_{I-2 \text{ of } 3} < ARL_{2 \text{ of } 3}$,I-2 of 3 在管制外的表現較佳; 當 p > 0.00002時, $ARL_{I-2 \text{ of } 3} > ARL_{2 \text{ of } 3}$,2 of 3 在管制外的表現較佳,且兩者 間的差距明顯。綜觀來看,當p產生微小偏移時,使用I-2of3可以更快的偵 測製程的微量偏移;而當 p 產生較大偏移時,使用 2 of 3 將可更快偵測製程偏移。

> 結論

連串測試準則在偵測製程改善時表現較佳,反之一般連串測試準則偵測在製 程惡化時表現較佳。但無論是一般連串測試準則或是連串測試準則,在監測製程 的能力上都是加入測試準則的CCC管制圖優於未加入測試準則的管制圖。因此本 研究證實加入測試準則確實有效提升CCC管制圖的偵測能力。

研究具體貢獻

本研究結果顯示,測試準則確實能夠提升管制圖的偵測能力。因此 我們可以將此方法用於其它監測高良率製程的管制圖,例如:指數加 權平均移動管制圖 (EWMA Chart)、累積和管制圖 (CUSUM Chart) 等, 利用加入測試準則來提升管制圖的偵測能力。並將其用於監測高良率 製程,例如:半導體、資訊、電子業等相關製程中,輔助以上產業提 高製程品質。