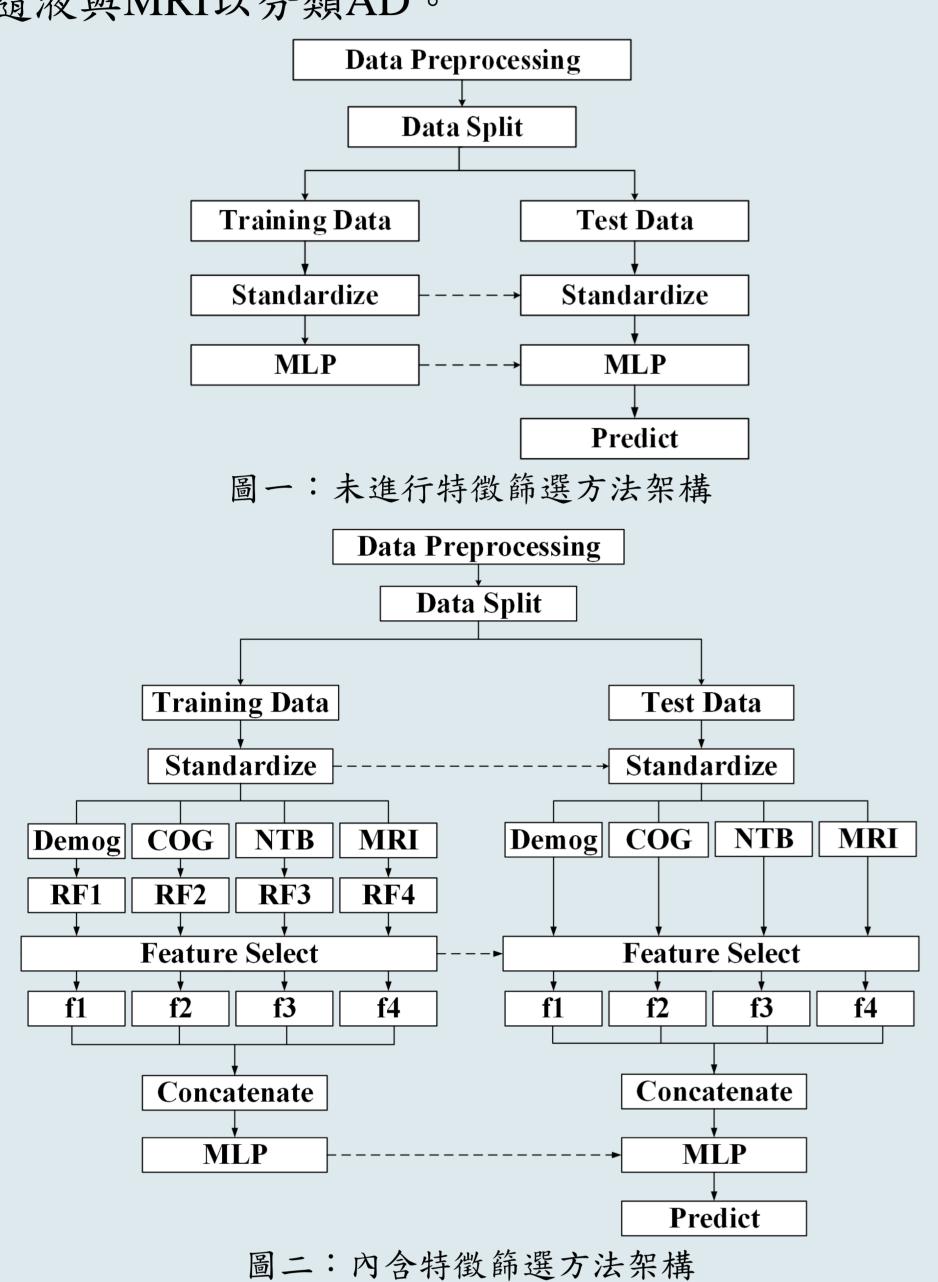


113學年度 元智大學 工業工程與管理系 畢業專題

多模態資料_以阿茲海默症為例

指導老師:林真如 教授 學生:李亭萱、鄭莉蓁、蔡佳妤


動機與目的

衛生福利部於2017年推估,台灣將在2025年邁入超高齡化社會,且於2024年統計,65歲以上失智症人口數約35萬人。對於台灣而言,失智症已是政府 社會與醫療體系需面臨的挑戰,而其中以阿茲海默症(Alzheimer's disease, AD)為主要問題。

阿茲海默症需經過許多檢測才可獲得較準確的判斷,如:日常認知功能測驗、簡易心智量表、及磁振造影(Magnetic Resonance Imaging, MRI)等,這些 資料型態不同,為多模態資料,因此本研究欲利用資料的獨特性與互補性,學習多模態資料的表示,融合之以達到判別病人為認知正常(Cognitively normal, CN)、輕度認知障礙(Mildly Cognitively Impaired, MCI)、與AD,提供快速且準確的工具輔助醫生診斷,及早發現疾病並治療,並藉由研究成果找出有效評 估AD的重要特徵。

研究方法

本研究採用阿茲海默症神經影像倡議(Alzheimer's Disease Neuroimaging Initiative, ADNI)資料庫中QT-PAD資料集進行分析。本研 究使用人口統計數據(Demog)、認知功能測試(COG)、神經心理測驗 (NTB)、腦脊隨液與MRI以分類AD。

相同處

相異處

- 1. 資料預處理:對類別型資
- 料使用獨熱編碼(one-hot encoding)

2. 資料分割:訓練:驗證:

- 測試=64:16:20 3. 標準化: min-max 4. K折交叉驗證
- 1. 保留重要性不為0
- 2. 保留重要性累積至90%
- 3. 保留重要性累積至80%
- 4. 保留重要性累積至60%

研究數據

	ž	頓別	CN	MCI	AD	絲	恩數	
	様	本數	203	230	84	5	517	
			表二:各	模態特徵	說明			
模点	模態 特徵說明					特徵	數	
D e 年齡、性別、教育程度、婚姻狀態、 BMI、APOE4、基礎症狀檢核、病史。				59				

表一:各類狀態樣本數

e m o g	BMI、APOE4、基礎症狀檢核、病史。 腦脊髓液:乙型類澱粉蛋白(ABETA)、 tau蛋白(TAU)和磷酸化tau蛋白(PTAU)	59	
C O G	 阿茲海默症評估量表 蒙特婁認知評估 簡易心智量表 老年憂鬱症量表 功能評估問卷 臨床失智評估量表 	7	
N T B	日常認知功能測驗Rey聽覺語言學習測驗波士頓命名測驗畫鐘測驗	49	
M R I	表面積皮質下體積皮質體積皮質厚度平均值	313	

• 皮質厚度標準差

參數設定

	表三:隨機森林參數設定						
隨機森林		特徵篩選方式					
	模型參數設定	原始資料	保留非0	累積至90%	累積至80%	累積至60%	
	亂數種子	42					
	決策樹	100					
	最大深度	3		5			
	最小節點			5			
	最小分裂樣本數	5			-		
	CPU			-1			

表四:MLP參數設定

MLP	特徵篩選方式							
模型訓練參數	原始資料	保留非0	累積至90%	累積至80%	累積至60%			
亂數種子	42							
隱藏層、輸出層	(255,170,85,30,3)	(225,170,85,30,3)	(100,50,25,3)	(130,60,35,3)	(100,50,25,3)			
丢棄率 (Dropout rate)	(0.3,0.5,0.7,0.75)	(0.3,0.5,0.7,0.75)	(0.7,0.7,0.7)	(0.5,0.7,0.8)	(0.7,0.7)			
激活函數	隱藏層:ReLu 輸出層:Softmax							
優化器	自適應矩估計(Adaptive Moment Estimation, Adam)							
損失函數	分類交叉熵(Categorical Cross Entropy)							
模型評估指標	分類準確率(Categorical accuracy)							
迭代次數	145	145	200	200	200			

研究結果

表五	•	分類結果
----	---	------

衣土・分類結木					
		宏觀平均值			
		平均值	標準差		
原	精確率	0.768	0.072		
始	召回率	0.806	0.049		
資	F ₁ -score	0.780	0.063		
料	特異度	0.878	0.033		
保	精確率	0.805	0.037		
留	召回率	0.802	0.041		
非	F ₁ -score	0.800	0.038		
0	特異度	0.894	0.019		
累積至90%	精確率	0.771	0.034		
	召回率	0.778	0.030		
	F ₁ -score	0.767	0.036		
	特異度	0.876	0.012		
累	精確率	0.822	0.039		
積至	召回率	0.822	0.019		
± 80	F ₁ -score	0.816	0.022		
%	特異度	0.899	0.010		
累	精確率	0.790	0.064		
積云	召回率	0.794	0.042		
至 60	F ₁ -score	0.788	0.055		
%	特異度	0.886	0.026		

- 1. CDRSB、ABETA和PTAU三個特徵在四 種策略中均為關鍵特徵,與認知功能測 試和罹患阿茲海默症風險相關。
- 2. 前五名中的ADAS13、MMSE(認知功能 測試)和EcogSPTotal (神經心理測 驗),反映出此兩種模態為重要的判斷 項目。

- 1. 特徵重要性累積至80%時,模型表 現最佳,精確率與召回率皆為 0.822, F₁-score為0.816,特異度為 0.899 •
- 2. 標準差愈低,表示模型預測效果佳 且穩定性高。
- 3. 適度篩選特徵能提升模型的效率和 預測準確性。

表六:各特徵篩選策略之特徵重要於					
	特徵名稱	特徵重要性			
	CDRSB	0.4582			
保	ABETA	0.1919			
留非	PTAU	0.1494			
0	ADAS13	0.1406			
	EcogSPTotal	0.1393			
累	CDRSB	0.4993			
· 積	ABETA	0.1759			
至	PTAU	0.1483			
90	ADAS13	0.1287			
%	MMSE	0.1253			
累	CDRSB	0.4993			
積	ABETA	0.1759			
至	PTAU	0.1483			
80	MMSE	0.1253			
%	ADNI_MEM	0.1251			
累	CDRSB	0.4993			
積	ABETA	0.1759			
至	PTAU	0.1483			
60	ADNI_MEM	0.1251			
%	EcogSPTotal	0.1092			

結論與未來研究方向

在多模態分類中,變數過多引發高維度問題會降低模型準確率與效率,因此特徵篩選和模態融合策略十分重要。本研究利用隨機森林和MLP篩選重要特 徵,探討不同篩選策略對模型表現的影響,並因應預測類別不均衡,採用宏觀平均值作為評估標準。

未來研究方向可以使用Shapley Additive explanation (SHAP)反推計算各個特徵對模型預測的貢獻性,並與隨機森林所得的特徵重要性排序進行比較,透過 過兩種方法篩選出的關鍵特徵,將為後續AD診斷提供重要依據。