

113 學年度元智大學 工業工程與管理學系 畢業專題 相依性CCC管制圖之參數估計研究

學生:陳子熙、蔡綜霖、江芸安 指導老師:陳佩雯

研究動機與目的

隨著科技快速進步,許多製程都朝著高品質發展,過 去傳統的管制圖較無法準確監控現今不良率極低的製程。 而後發展出 CCC 管制圖,透過監控不良品是否在管制界限 內。藉由模擬實際抽樣數據後,探討何種抽樣策略具有足夠 可信度,以確保PHASE1在收集、整理、分析之數據可用於 PHASE2 •

第一階段-小樣本

固定抽樣組數 m 且改變樣本數 n 之下,不合格率與 序列相關值的波動性大、變異數高,數據不穩定,顯示小樣 本為較差的抽樣策略。

	p不合格率			d序列相關值			
Mean	StDev	Variance	Mean	StDev	Variance		
0.01	0.03162	0.001	0.88889	0.35136	0.12345		
0.02	0.03496	0.00122	0.67837	0.51812	0.26845		
0.01998	0.0172	0.0002	0.3793	0.53421	0.28538		
0.0225	0.18447	0.0034	0.27668	0.49925	0.24925		
0.014	0.0135	0.00018	0.38563	0.52881	0.27963		
0.02833	0.02229	0.00097	0.30545	0.49068	0.24077		
	0.01 0.02 0.01998 0.0225 0.014	0.01 0.03162 0.02 0.03496 0.01998 0.0172 0.0225 0.18447 0.014 0.0135	0.01 0.03162 0.001 0.02 0.03496 0.00122 0.01998 0.0172 0.0002 0.0225 0.18447 0.0034 0.014 0.0135 0.00018	0.01 0.03162 0.001 0.88889 0.02 0.03496 0.00122 0.67837 0.01998 0.0172 0.0002 0.3793 0.0225 0.18447 0.0034 0.27668 0.014 0.0135 0.00018 0.38563	0.01 0.03162 0.001 0.88889 0.35136 0.02 0.03496 0.00122 0.67837 0.51812 0.01998 0.0172 0.0002 0.3793 0.53421 0.0225 0.18447 0.0034 0.27668 0.49925 0.014 0.0135 0.00018 0.38563 0.52881		

固定樣本數 n 且改變抽樣組數 m 之下,增加抽樣組 數能有效降低 不合格率 與 序列相關值 的波動,但由於 樣本數較少,缺乏可信度。

		p不合格率			d序列相關值			
	Mean	StDev	Variance	Mean	StDev	Variance		
n=10, m=10	0.01	0.31623	0.001	0.88889	0.35136	0.12345		
n=10, m=20	0.02	0.04104	0.00168	0.77778	0.45599	0.20792		
n=10, m=30	0.02	0.04068	0.00166	0.77778	0.45204	0.20434		
n=10, m=40	0.0275	0.04522	0.00205	0.69445	0.50244	0.25245		
n=10, m=50	0.018	0.03881	0.00151	0.8	0.4312	0.18594		
n=10, m=60	0.01667	0.03758	0.00141	0.81482	0.41758	0.17437		

分析

第一張圖中固定 m 增加 n,雖不合 格率和序列相關值的波動性逐漸降低,但 小樣本的數據穩定性仍有限。

第二張圖中,固定 n 增加 m 能有效 减少波動並提升數據穩定性,但小樣本仍 缺乏足夠的可信度。

第二階段-中樣本

隨著樣本數 n 增加(固定 m=50),不合格率 和 序列 相關值 的標準差和變異數大幅下降,數據穩定性顯著提 相關值的標準差和變異數大幅下降,數據穩定性顯著提 升,尤其在 n≥200 後趨於穩定。

		p不合格率			d序列相關值			
	Mean	Mean StDev		Mean	StDev	Variance		
n=100, m=50	0.0212	0.01409	0.0002	0.08335	0.31081	0.0966		
n=150, m=50	0.22223	0.38492	0.14816	0.5	0.86603	0.75		
n=200,m=50	0.0209	0.00913	8.3E-05	-0.0063	0.05077	0.00258		
n=250,m=50	0.01872	0.00613	0.0000-38	-0.003	0.04704	0.00221		
n=300,m=50	0.01987	0.00086	1E-06	-0.0034	0.00884	7.8E-05		
n=350,m=50	0.01974	0.00105	1E-06	-0.0063	0.05077	0.00258		

隨著樣本數 n 增加(固定 m=50),不合格率和序列 升,尤其在 n≥200 後趨於穩定。

	p不合格率			d序列相關值			
	Mean	StDev	Variance	Mean	StDev	Variance	
n=100, m=50	0.0212	0.01409	0.0002	0.08335	0.31081	0.0966	
n=150, m=50	0.22223	0.38492	0.14816	0.5	0.86603	0.75	
n=200,m=50	0.0209	0.00913	8.3E-05	-0.0063	0.05077	0.00258	
n=250,m=50	0.01872	0.00613	0.0000-38	-0.003	0.04704	0.00221	
n=300,m=50	0.01987	0.00086	1E-06	-0.0034	0.00884	7.8E-05	
n=350,m=50	0.01974	0.00105	1E-06	-0.0063	0.05077	0.00258	

分析

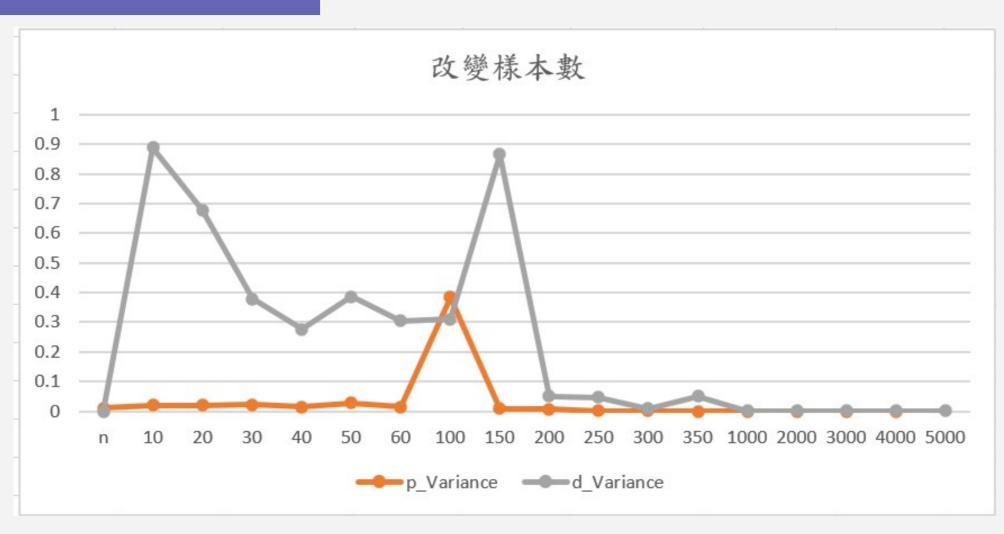
增加樣本數相較增加抽樣組數,更 能夠有效降低不合格率和序列相關值的 波動性與變異數,提升數據穩定性。

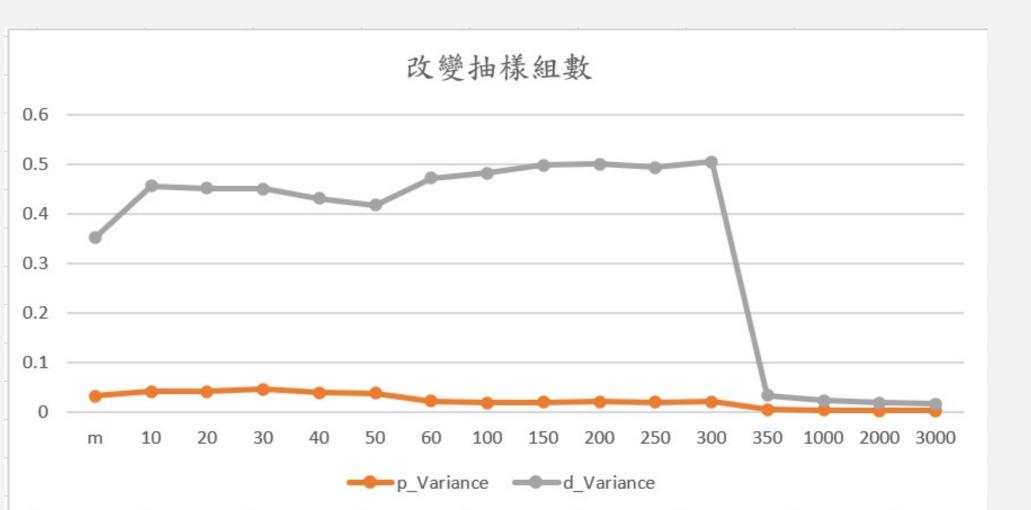
第三階段-大樣本

由於改變n比改變m更能使數據趨於穩定,此階段透 過大樣本數採用該種抽樣策略,使得平均值僅有輕微波 動,變異數縮小,且樣本數量越大,數據之穩定性越高。

	p不合格率			d序列相關值			
	Mean	Mean StDev		Mean	<u>StDev</u>	Variance	
n=1000, m=1000	0.01975	1.83E-05	0.004283	-0.00193	0.000911	0.03019	
n=2000, m=1000	0.020178	9.75E-06	0.003122	0.000328	0.000492	0.022177	
n=3000, m=1000	0.020002	6.7295E-06	0.002594	-0.00093	0.000337239	0.018364	
n=4000, m=1000	0.019953	4.98E-06	0.002232	-0.00071	0.000238	0.015442	
n=5000, m=1000	0.020132	4.05E-06	0.002012	-0.00086	0.000186	0.013636	

第四階段


在樣本數量足夠的前提下,將轉換機率 a0 和 b0 進 行更小量的微調,相較於微調至校數點後一位,小數點後 兩位會對於數據之準確性更有幫助。


			p不合格率	<u> </u>	d序列相關值			
		Mean	StDev	Variance	Mean	StDev	Variance	
n=10, m=300	a0=0.3, b0=0.7	0.27	0.13624	0.01856	-0.0842	0.33035	0.10913	
n=10, m=300	a0=0,4, b0=0,6	0.36433	0.16243	0.02638	-0.13678	0.32999	0.10889	
n=10, m=300	a0=0.2, b0=0.8	0.17	0.12254	0.01502	0.06469	0.45883	0.21052	
n=10, m=300	a0=0.36, b0=0.64	0.32433	0.14644	2.15E-02	-1.2123	0.31089	0.09665	

分析

樣本數量越大,數據之穩定性越 高,結果會更具有可信度。將參數進行 更小量的微調是有助於提升數據之可 信度的。

結論

p不合格率與 d 序列相關值之變異數都隨著樣本數的增加而下降,且在 n=5000 時趨近於零。尤其在增加樣本數的情況下,數據分布更加穩定,表示該 抽測策略之結果更具有可信度。